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Spatially developing vortices found in curved channels (Dean vortices) and in a 
concave boundary layer (Gortler vortices) asre studied numerically using Legendre 
spectral-element methods. The linear instability of these vortices with respect to 
spanwise perturbations (Eckhaus instability) is examined using parabolized spatial 
stability analysis. The nonlinear evolution of this instability is studied by solving the 
parabolized Navier-Stokes equations. When the energy level of Dean and Gortler 
vortices in the flow is low, the spatial growth of the vortices is governed by primary 
instability (Dean or Gortler instability). At this stage, vortices with different 
wavelengths can develop at the same time and do not interact with each other 
significantly. When certain vortices reach the nonlinear stage first and become the 
dominant wavelength, spatial Eckhaus instability sets in. For all cases studied, spatially 
developing Dean and Gortler vortices are found to be most unstable to spanwise 
disturbances with wavelength twice or times that of the dominant one. The nonlinear 
growth of these perturbations generates a small vortex pair in between two pairs of 
vortices with long wavelength, but forces two pairs of vortices with short wavelength 
to develop into one pair. For Gortler vortices, this is manifested mostly by irregular 
and deformed vortex structures. For Dean vortices, this is manifested by vortex 
splitting and merging, and spatial Eckhaus instability plays an important role in the 
wavenumber selection process. 

1. Introduction 
Counter-rotating streamwise vortices caused by streamwise curvature have been 

attracting many researchers’ attention for years. They can be found in many 
applications and play an important role in the transition toward turbulence. For open 
fluid systems where fluid particles are advected through the system, Dean vortices 
found in curved channels (Dean 1928) and Gortler vortices near a concave surface 
(Gortler 1940) are two classical examples of such vortices. Since these vortices 
significantly change the flow pattern, the boundary-layer structure, and the transition 
to turbulence, a better understanding of these vortices may lead to a better 
understanding of many flows including the flows near the concave surfaces of turbine 
blades and aerofoils, and coolant flows inside turbine blades. Because of the analogies 
between the effects of curvature, rotation and buoyancy, the study of Dean vortices 
and Gortler vortices may also give some insight into the effects of rotation and 
buoyancy on transitions in the flow on a rotating plate and inside a rotating channel. 
In this study, using a Legendre spectral-element method and spatial instability theory, 
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Y 
FIGURE 1. The geometry of curved channel flow. 

FIGURE 2. The geometry of boundary layer flow over a concave surface. 
The streamwise direction is 0. 

we examine numerically the instabilities of Dean and Gortler vortices with respect to 
spanwise perturbations and the effects of these perturbations on wavenumber selection 
and nonlinear development of these vortices. 

The flow geometries for Dean and Gortler vortices are shown in figures 1 and 2. The 
streamwise and spanwise directions of the flow are given by 0 and z respectively. For 
Dean vortices the channel spacing is d = ro - ri. The Reynolds number is Re = Ud/2v, 
where is the mean (bulk) streamwise velocity. The radius ratio of the two walls is 
y = ri /ro,  which is a measure of channel curvature. The spanwise dimensionless 
wavenumber of the vortices is defined as a = nd/h ,  where h is the dimensional 
wavelength of the vortices. 

For Gortler vortices, we will restrict ourselves to the case of constant wall curvature, 
i.e. the radius of the wall R is constant. The free-stream velocity is U,. The effect of 
the wall curvature is measured by the Gortler number 

u,s, s, 
G = y ( x r ,  

where 8, is the momentum thickness of a Blasius boundary layer at the downstream 
distance x = R8 from the leading edge. The wall curvature can also be measured by the 
ratio y = (R--&,,)/R, where So.,, is the Blasius boundary-layer thickness at 
ue = O.99Um. In this study, the wavelength of Gortler vortices is measured by the 
dimensionless parameter 
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where h is the dimensional wavelength in the spanwise direction. Both A and h are 
constant in the streamwise direction, but G increases with boundary-layer thickness 
downstream. 

Ever since Dean (1928) and Gortler (1940) predicted the existence of a secondary 
vortex-type motion in curved channels and boundary layers over concave surfaces, 
numerous efforts have been made both experimentally and theoretically toward an 
understanding of these vortices. For brevity we shall not review these studies here. 
Readers are referred to Finlay, Keller & Ferziger (1988), Ligrani & Niver (1988), 
Matsson & Alfredsson (1990, 1992), Yang & Kim (1991) and Ligrani et al. (1992) for 
some recent efforts on Dean vortices. A review of early theoretical works on Gortler 
vortices can be found in Herbert (1976). Owing to the difficulties associated with the 
non-parallel nature of the Gortler problem, there have been many controversies, and 
discrepancies still exist even among some recent works. Readers are referred to Floryan 
& Saric (1984), Day, Herbert & Saric (1990), Sabry & Liu (1991), Liu & Domaradzki 
(1990), Yu & Liu (1991), Lee & Liu (1992), and especially the papers from Hall and 
his group (e.g. 1983, 1988, 1990) for some recent theoretical efforts. For experimental 
works, readers are referred to Bippes (1972), Aihara & Koyama (1980), Aihara, 
Tomita & Ito (1984) and Swearingen & Blackwelder (1987). 

To our knowledge, most previous research in the Dean and Gortler problems has 
dealt with primary instabilities (Dean or Gortler instability), secondary instabilities 
with respect to streamwise disturbances (which leads to wavy or horseshoe types of 
vortices), nonlinear evolutions of these vortices and the interactions of Dean or Gortler 
instabilities with Tollmien-Schlichting waves or other instabilities. Though many 
instabilities predicted by theoretical works over the years have been observed in 
experiments, many of the rich features revealed experimentally are still unexplained. In 
particular, the instabilities of spatially developing, nonlinear Dean or Gortler vortices 
with respect to spanwise disturbanes have never been addressed before. In Guo & 
Finlay (1991), we studied the instability of stationary nonlinear Dean vortices with 
respect to spanwise perturbation using a temporal theory. It is found that the stability 
boundary of such an instability is a closed loop in an (Re, a)-plane. Outside the stability 
boundary, the most unstable wavenumber is usually half or one and half that of the 
base Dean vortices. The nonlinear development of these most unstable spanwise 
perturbations causes two pairs of Dean vortices to split into three pairs if the 
wavenumbers of the vortices are small and to merge into one pair if the wavenumbers 
are large. We referred to this type of instability as Eckhaus instability to credit the first 
work of this kind done by Eckhaus (1965). 

One drawback of temporal theories is the difficulty in comparing with spatially 
developing experimental observations. In this study, we instead use spatial instability 
theory and three-dimensional numerical simulation to develop a numerical method for 
studying the spatial Eckhaus instability and its nonlinear evolution. We examine the 
roles of primary instability and spatial Eckhaus instability in the wavenumber selection 
process and their effects on the nonlinear evolution of Dean and Gortler vortices. We 
believe that such a study is essential to a better understanding of the dynamics of Dean 
and Gortler vortices. Since both Gortler vortices and Dean vortices are caused by 
streamwise curvature due to centrifugal instabilities and share various similarities, we 
compare and contrast the features of these two types of vortices. In $2 we describe the 
theories and numerical approahes used in this study. Code verifications are given in $ 3 .  
The linear spatial Eckhaus instability of nonlinear Dean and Gortler vortices is studied 
in $4. The nonlinear aspect of this instability and its effect on the wavenumber selection 
are discussed in $9 5 and 6. Concluding remarks are given in $ 7. 
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2. Theory and numerical methods 
Heuristically, one can say that when an incompressible flow has a dominant 

streamwise velocity and has slow streamwise variation compared with cross-stream 
variation, the upstream influence of downstream disturbances can be neglected and the 
flow has a parabolic nature in the streamwise direction. The governing Navier-Stokes 
equations then can be 'parabolized'. This idea has been explored rather extensively in 
engineering applications for many years. Readers are referred to Fletcher (1988) for a 
review. Recently, this approach has been employed in stability theory first by Hall 
(1983, 1988) for Gortler instability and by Bertolotti, Herbert & Spalart (1992) for a 
more general case. In this section, we first present our formulation in the frame of a 
parabolization approach, and then present our numerical methods to solve the 
resulting equations. 

2.1. Governing equations for base $ow 
In this study, the base flow uo is three-dimensional spatially developing nonlinear Dean 
or Gortler vortices. It has been shown by Hall (1983, 1988) that in the limit of 
Re + co, Gortler vortices can be described by a set of parabolic equations derived from 
the Navier-Stokes equations. For curved channel flows, it has been shown both 
numerically and experimentally (cf. Bara, Nandakumar & Masiliyah 1992) that Dean 
vortices can also be described by a parabolized version of Navier-Stokes equations. In 
this study, we adopt the same version of the parabolized Navier-Stokes equations 
(PNS) used by Bara et al. (1992) : the streamwise diffusion terms are neglected and the 
pressure influence on the streamwise momentum equation is considered to be invariant 
in the cross-stream plane, i.e. the pressure in the streamwise momentum equation is 
averaged over the cross-stream plane. This version of PNS can be derived through a 
simple scale analysis and its variations have been explored extensively by many 
researchers (cf. Fletcher 1988). When the radius ratio y > 0.9, this version of PNS can 
be applied safely. In this study, for ease of implementation, the computational 
variables for the velocities are chosen to be $r = ruf, $o = ru; and q5z = ru,". The 
resulting PNS in cylindrical coordinates are carefully arranged in the streamwise 
direction as 

- - 

and in the cross-stream directions as 

The continuity equation is 

(2.2b) 

(2.3) 
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In (2.1), p" is the pressure averaged across the ( r ,  z)-plane. For channel flows, the 
velocity u" is non-dimensionalized by the mean streamwise velocity 0. For growing 
boundary layers, uo is non-dimensionalized by the free-stream velocity Urn. In an ( r ,  z)- 
plane, (2.1k(2.3) are elliptic. In the streamwise direction, the variable 6 behaves like 
time t in a two-dimensional Navier-Stokes problem. Non-slip boundary conditions are 
used at walls. In the spanwise direction, z ,  periodic boundary conditions are used for 
both Dean and Gortler vortices. In the case of boundary-layer flow on a concave wall, 
homogeneous Neumann boundary conditions are applied in the r-direction far away 
from the wall. 

We have few comments to make about (2.1)-(2.3). 
(a)  In the limit of R+ co (or y-f 1) and Re + co, only the curvature-induced term 

&/r3  in (2.2) needs to be considered and all the other curvature related terms in 
(2.1k(2.3) are of higher order and can be neglected. In a channel geometry, it can be 
shown that this term produces the well-known Dean number and the effects of 
Reynolds number Re and curvature can be described by a single Dean number (cf. 
Drazin & Reid 1981). For a concave boundary layer with @"/a0 = 0, it can be shown 
(rather straightforwardly) that this term produces the Gortler number, and (2.1)-(2.3) 
are then identical to those in Hall (1988, equation 2.4), which have been shown to be 
correct to order Re-f. 

(b)  When R is finite ( y  < 0.99), it has been shown in the case of the Dean problem 
(cf. Finlay et al. 1988) that the other high-order curvature terms will affect the stability 
boundary significantly, and the retaining of these terms in (2.1)-(2.3) is essential. In this 
study, y is chosen to be 0.975 in the case of the Dean problem. In the Gortler problem, 
the effects of finite R have never been addressed before and in this study y > 0.995. For 
completeness, we keep all curvature-induced terms in (2.+(2.3) in this study. 

(c) Equations (2.1)-(2.3) can also be derived from the frame of the parabolized 
stability equations (PSE) proposed by Bertolotti et al. (1992). When periodic boundary 
conditions are used in the spanwise direction, the flow uo can be written as 

m 

uo = C iiO,(r, 8) exp (naz), 
n=-m 

where a is the spanwise wavenumber of uo. There are only spanwise wavenumbers in 
the above expansion and the streamwise wavenumbers of the flow can be considered 
to be zero. Substituting the above expansion into the nonlinear PSE, one can arrive at 
(2.1F(2.3) naturally. So in this sense, (2.1)-(2.3) are a special case of PSE. 

2.2. Spatial Eckhaus instability 
Once the developing Dean and Gortler vortices u" are found from (2.1)-(2.3), the 
stability of u" with respect to spanwise perturbation can be studied by substituting 

u = uO+u' (2.5) 
into the Navier-Stokes equations. Here, u' is a perturbation of the form (cf. Guo & 
Finlay 1991) 

(2 * 6) 
where /3 is the perturbation wavenumber and ii is the complex eigenfunction, which can 
be written as 

u' = L(r, 8, z) exp (ipz), 

m 

ii = 2 iin(r, 6) exp (inaz), 
n=-m 

where c1 is the wavenumber of the base flow u". In some cases it is more convenient to 
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use the non-dimensionalized wavenumber b = P/a. The flow pattern of the 
perturbation is given by the real part of (2.6). Note that tl is a function of 6' and is not 
normalized. The spatial growth rate of u' can be calculated from ii (ref. equation 2.14). 
Physically, the instability defined by (2.6) represents the interactions that occur 
between developing Dean or Gortler vortices. In most experimental observations and 
numerical simulations, Dean or Gortler vortices with a well-defined wavenumber are 
seen at a specific location. One myth is that the development of one wavenumber 
suppresses the growth of other wavenumbers so that only one wavenumber is observed 
at one location. To resolve this issue is one of the motivations for carrying out this 
study. 

It can be shown that the perturbation of the form (2.6) is contained in (2.1)-(2.3). 
For example, the perturbation with b = 0.5 can be calculated from (2.1)-(2.3) by 
including two pairs of vortices in the computational box. But in practice this is 
inconvenient and also expensive sometimes. For example, b = 0.1 means ten pairs of 
vortices must be included in the box in order to calculate the corresponding 
perturbation. Besides, nonlinear interactions among different spanwise modes of the 
base flow also make such an approach rather inaccurate. In this paper, this instability 
is studied by the linear ' parabolized' stability equations derived by substituting (2.6) 
into the Navier-Stokes equations and applying a parabolization approach identical to 
that of (2.1)-(2.3). For simplicity, we use Cartesian coordinates to illustrate our 
formulation. With the streamwise direction x and spanwise direction z ,  the stability 
equations can be written in the streamwise direction as 

a 0 -  1 azu", azu", 
2-(u,u,)+w, = - -+- 

ax R e [  ay2 aZ] 
and in the cross-stream directions as 

The continuity equation is 

(2 .9~)  

(2.9b) 

(2.10) 

Here k = x, y and z and f ,  result from nonlinear curvature terms. The base flow uo in 
(2.8)-(2.10) is provided by (2.1)-(2.3). The absence of pressure in the streamwise 
moment equation (2.8) is because the perturbation pressure of the form (2.6) is zero 
when averaged on the cross-stream plane. Since (2.6) is a subset of the solution of 
(2.1)-(2.3), the parabolization process used to derive (2.8)-(2.10) can be justified in the 
same fashion as for (2.1)-(2.3). 

2.3. Some comments on equations (2.1)-(2.3) and (2.8)-(2.10) 
Theoretically, equations (2.1)-(2.3) should be solved first to obtain the base flow uo. 
Then the stability equations (2.8)-(2.10) can be solved using the stored base flow data. 
Since both sets (2.1F(2.3) and (2.8)-(2.10) have a parabolic nature in the streamwise 
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direction, only the inflow boundary conditions at 8, (or x,) are needed. Their solutions 
can be marched downstream simultaneously, with the solution of (2.1)<2.3) being one 
step ahead of that of (2.8)-(2.10). There is no need to store the base flow data. 

In order to trigger the development of nonlinear Dean or Gortler vortices in the base 
flow, small (linear) disturbances are usually introduced in the initial flow condition (i.e. 
inflow condition) at 8 = 8, to start the calculation of (2.1)-(2.3). For channel flows, 8, 
is irrelevant and we set 8, = 0. For boundary-layer flows, xo = O0 R is meaningful. The 
solution of the stability equations (2.8)-(2.10) is also marched downstream with certain 
initial eigenfunctions at the same 8,, as that of the base flow. 

Concerning the nature of the stability equations (2.8)-(2.10), we have the following 
comments. When the base flow is set to be one-dimensional Poiseuille flow, (2.8)-(2.10) 
contain the spatial Dean instability studied by Matsson & Alfredsson (1990). When the 
base flow is set to be Blasius flow, (2.8)-(2.10) reduce to those of Hall (1983) in the limit 
of Re+ 00 and R-t 00, which have been shown to govern Gortler instability correctly 
to order Re-;. When the base flow develops from Poiseuille flow or Blasius flow into 
nonlinear Dean or Gortler vortices, the character of (2.8)-(2.10) changes from Dean 
or Gortler instability to the instability of these nonlinear vortices with respect to 
spanwise perturbation, i.e. spatial Eckhaus instability. This instability sets in only 
when the vortices in the base flow become nonlinear and thus is different from primary 
instability (Dean or Gortler instability). 

Once the most unstable wavenumber p is found from (2.8)-(2.10), the nonlinear 
development of this perturbation can be studied by (2.1)-(2.3) with a computational 
box which can hold m pairs of base vortices. Here m is the minimum number that 
makes m x @/a  an integer. Our results show that the most unstable wavenumber for 
spatial Eckhaus instability in this study is usually ;a or %a. So only two pairs of vortices 
need to be included in a computational box in order to study the nonlinear dynamics 
of this instability. 

2.4. A Legendre spectral-element method 

Control-volume methods (Patankar & Spalding 1972), finite-difference methods 
(Rubin, Khosla & Saari 1977) and finite-element methods (Baker 1983) have been used 
to solve (2.1)-(2.3). In this study, we choose a Legendre spectral-element method 
(Rsnquist 1988; Maday & Patera 1989). The combination of the high accuracy of 
spectral methods with the geometry flexibility of finite-element methods make the 
spectral-element methods particularly suitable for this study. For example, to switch 
from Dean vortices to Gortler vorties, we only need to modify the boundary 
conditions, which requires only minor code changes. This advantage helps us to verify 
the numerical codes developed in this study and gives us confidence in our results for 
the Gortler problem. Boundary layers can also be captured easily by using small 
elements near the wall. Thus there is no need to use a coordinate transformation. 

In the streamwise direction, a third-order Adam-Bashforth (AB3) scheme is used for 
the nonlinear convection terms and curvature terms, while a backward Euler scheme 
is used for the viscous terms. This combination is motivated by the fact that the spatial 
marching step size is mostly limited by the explicit treatment of the nonlinear terms in 
(2.1)-(2.3) and a third-order Adam-Bashforth scheme offers a reasonably large 
numerical stability region. We have also tried a Crank-Nicolson scheme for the viscous 
terms, but since our numerical experiments found no significant difference in accuracy 
or numerical stability, this scheme is not used in this study. 

Though (2.1)-(2.3) are different from any example given by Rsnquist (1988) and 
Maday & Patera (1989), following the procedures they give and standard variational 
principles, the discretization of (2.1)-(2.3) in an ( r ,  z)-plane is straightforward. Within 



8 Y. Guo and W. H. Finlay 

each element, the velocity uo is represented on ( N +  1)(N+ 1) Gauss-Lobatto/ 
Gauss-Lobatto Legendre nodes by Legendre-Lagrange interpolating polynomials of 
degree N .  The pressure p" is represented on ( N -  1)(N- 1) Gauss/Gauss Legendre 
nodes by Legendre-Lagrange interpolating polynomials of degree ( N -  2). The 
resulting matrix system can be written in the streamwise direction as 

(2.11) 

and in the cross-stream directions as 

The continuity equation is 

(2.13) 

Equation (2.12) contains two equations, obtained by setting i = r and z .  The symbol 
U: is the vector consisting of $< at the Gauss-Lobatto/Gauss-Lobatto nodes at step 
n ; P;+l is the streamwise pressure gradient averaged across the ( r ,  z)-plane at step n + 1 ; 
Pn+l is the vector consisting of the pressure p at the Gauss/Gauss nodes at step n + 1. 
The symbols A, B and Di are the standard Laplace matrix, mass matrix (lumped) and 
gradient matrices; Bi  is the lumped mass matrix of &/r3 on the Gauss-Lo- 
batto/Gauss-Lobatto nodes at step n, and B, is the mass matrix on the 
Gauss/Gauss-Lobatto nodes. Ci and e(i = r ,  0, z )  are from the convection and 
curvature terms. The coefficient PI = g, -% and for I = 0, 1 and 2 respectively. More 
details regarding the discretization of (2.1)-(2.3) can be found in Guo (1992). 

The following strategies are used to march the solutions of (2.1)-(2.13) in the 
streamwise direction. The streamwise momentum equation (2.11) is marched first from 
step n to step n + 1 to give U;+l; B;+' is then calculated from Ui+l. For the flow on 
a concave wall, P;+' is set to zero. For channel flow, Pi+' is found by forcing the flow 
rate 

Q = lu:+' dr dz 

to be constant. This is done by a steepest-descent iterative method. Once Ut+l and B;+l 
are known, Pn+l, U:+l and U:+' can be solved for the cross-stream momentum 
equations (2.12) and the continuity equation (2.13) using a global iterative Uzawa 
scheme similar to the one used by Rarnquist (1988). Because ug = 0 at walls, the popular 
pressure Poisson equation decoupling approaches (for example Patera 1984; Kleiser & 
Schumann 1984) are not applicable for (2.2) and (2.3) (the derived Poisson equation for 
pressure is singular at walls). Preconditioned conjugate iterative methods similar to 
those used by Rarnquist (1988) are used to deal with the resulting linear matrix 
problems. 

The discretization of the stability equations (2.8)-(2.10) follows that of (2.1F(2.3). 
The solutions of (2.8k(2.10) are marched in the streamwise direction together with 
(2.1)-(2.3) using a strategy similar to that for (2.1 1)-(2.13). More details can be found 
in Guo (1992). 

Once the perturbation u' is found, the energy growth rate CT of the perturbation can 
be calculated from 

1 

(2.14) 
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where e is the energy of the perturbation defined by 

e = slu\’ dr dz, 

and I is the lengthscale used to non-dimensionalize g. For Dean vortices, the channel 
half-width, id, is used for 1. For Gortler vortices, the streamwise distance x from the 
leading edge is used. In cylindrical coordinates, Ax = A&(r, - ri)  for channel flows and 
Ax = RAB for growing boundary layers. In some cases, the growth rate g1 defined by 

is also used. For the linear stability equations (2.8)-(2. lo), the absolute energy level of 
the perturbation u‘ is irrelevant. 

In this study, the orders of the polynomials used for each spectral element are 8, 10, 
or 12. For the simulation and stability analysis of Dean vorties, usually 2 4  elements 
are used in the radial directions, depending on Re. For the simulation and stability 
analysis of Gortler vortices, the number of elements in the radial direction varies from 
3 to 6. The computational grid extends to at least 860,99 normal to the wall. In the 
spanwise direction, the number of elements depends on the aspect ratio of the 
computational box. The minimum is two. 

3. Code verification 
Since the numerical schemes we use to solve the parabolized Navier-Stokes 

equations (2.1)-(2.3) and the related stability equations (2.8)-(2.10) have never been 
reported before, proper code verifications are crucial. In the rest of this study, we will 
refer to the code that solves (2.1)-(2.3) as the ‘simulation code’ and the code that deals 
with (2.8)-(2.10) as the ‘stability code’. 

3.1. Verification of the simulation code 
For fully developed channel flow, our simulation code can accurately duplicate the 
velocity and pressure of the fully developed nonlinear Dean vortices given by Finlay 
et al. (1988) and Guo & Finlay (1991), regardless of what initial conditions are used to 
start the simulations. The simulations of developing Dean vortices cannot be verified 
directly because the velocity and pressure of the developing Dean vortices depend both 
on the initial conditions and the streamwise location and there are no such data 
available. However, through the manipulation of initial flow conditions, our numerical 
results can be made to match the data given by Matsson & Alfredsson (1992) 
experimentally and by Bottaro, Matsson & Alfredsson (199 1) numerically. Another 
indirect verification is given by the fact that the streamwise growth of developing Dean 
vortices from the simulation code is accurately predicted by the stability code, i.e. both 
our codes gives the same growth rates for linear Dean vortices (see 0 5) .  Since these two 
codes use different theories and formulations, it is unlikely that both codes have errors 
that lead to the same results. 

In the geometry of a flat plate, the code can accurately duplicate the Blasius velocity 
profile (Schlichting 1955). On a concave surface, through the manipulation of the 
energy level of the perturbtions near the leading edge, Gortler vortices with strength 
comparable with those observed by Swearingen & Blackwelder (1987) and Lee & Liu 
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FIGURE 3. Velocity profile ug at the peak ( y )  and valley (----) of Gortler vortices with h = 1.8 cm 
is shown as a function of 7 = y(U,/vx)i  at (a) x = 60 cm; (b)  x = 70 cm; (c) x = 80 cm and (d )  
x = 90 cm. The data of Swearingen & Blackwelder (1987) are given as 0 (peak) and A (valley). 

(1992) can also be produced by our simulation code. Figure 3 shows a comparison of 
the streamwise velocity uo at different x with the data from Swearingen & Blackwelder 
(1987). The spanwise wavelength h = 1.8 cm on a concave wall with radius R = 3.2 m. 
The free-stream velocity U ,  is 5 m s-l and the kinematic viscosity v is 14.5 x m s-'. 
The simulation is started at a distance x = 12.8 cm from the leading edge using the 
initial flow condition uo = (0.4~1, sin (27~2/h), u,, 0); ZI, and uB are the vertical and 
streamwise components of Blasius boundary-layer flow. Different initial conditions can 
also give Gortler vortices of the same strength. It can be seen that the agreement is 
good up to x = 90 cm. For x 2 100 cm in Swearingen & Blackwelder (1987), Gortler 
vortices begin to develop into time-dependent wavy vortices and horseshoe-type vortices 
and they break down shortly afterwards. 

Sabry & Liu (1991) and Lee & Liu (1992) give a similar comparison with the 
experimental observations of Swearingen & Blackwelder (1 987) using a temporal 
theory and spatial parabolized methods. In general, their results from temporally and 
spatially evolving Gortler vortices are quite similar to ours. Readers are referred to 
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FIGURE 4. The growth rates v1 of linear Gortler vortices with A = 62 are shown as functions of 
streamwise distance from the leading edge x / x o ,  where x, is the streamwise location of the neutral 
point given by a local method. The values of v1 (----) are obtained with the initial eigenfunctions 
( -u,, 0,O); the u1 (-) are obtained with the initial eigenfunctions (0, uB, 0), where u, and u, are 
the streamwise and vertical components of Blasius flow. The growth rates v1 obtained by Day et al. 
(1990) using a local method (a) and a global marching method (0) are also given. 

Sabry & Liu (1991) and Lee & Liu (1992) for more details on the nonlinear features 
of Gortler vortices, since this is not the topic of this study. 

3.2. Verification of the stability code 
In the channel geometry, the stability code can accurately duplicate the primary 
instability boundary from a temporal theory (Guo & Finlay 1991) by setting the base 
flow uo in (2.8)-(2.10) to be one-dimensional Poiseuille flow. The growth rates given by 
the spatial stability code are the same as those given by our simulation code. We can 
also accurately duplicate the results given by Matsson & Alfredsson (1990) for the 
primary spatial instability associated with Dean vortices. 

When the base flow is set to be fully developed Dean vortices, the stability code can 
accurately duplicate the stability boundary of Eckhaus instability given by Guo & 
Finlay (1991) using temporal theory. The code also gives growth rates and 
eigenfunctions which are symmetric in b about b = P/a = 0.5, and have the following 
property : 

Here f (b) represents the spatial growth rate and eigenfunction at b, and n = 1,2,3, . . . . 
Since (3.1) can be derived analytically for any spanwise periodic flow (Guo & Finlay 
1991; Guo 1992), we believe that our stability code is working properly for fully 
developed flows. 

For spatially developing flow, the stability code can be verified by the linear stability 
analysis of Gortler vortices. When the base flow uo in (2.8>-(2.10) is set to be Blasius 
flow, the stability code is equivalent to the global marching method used by Hall 
(1983). First, our code confirms Hall's results that the stability boundary depends very 
much on how and where the initial perturbations are used to start the analysis. Further 
downstream, our results confirm the statement in Hall (1983) that the growth rates 
converge to a unique curve which does not depend on the initial perturbations. 

Figure 4 shows the typical development of the growth rates for Gortler vortices with 
the wavelength parameter A = 62. Also given for comparison are the growth rates 
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FIGURE 5. Comparison of the eigenfunction components (a) Go and (b) 6, of linear Gortler vortices 
(-) with the data obtained by Day et al. (1990) using a Iycal method (. . . . . . . .) and a global 
marching method (0). Distance from the wall is 7 = y(U,/ux)z and ti, is scaled by U ,  x,/u. 

calculated by Day et al. (1990) using a local approach (Floryan & Saric 1984) and a 
global marching method (Hall 1983). In figure 4, x,, is the streamwise location of the 
neutral point given by the local method. For A = 62, the neutral Gortler number from 
the local method is Go = 0.998. It can be seen that our neutral points depend on the 
initial perturbations and locations used to start the marching. The difference between 
the data given by Day et al. and ours for x/x,, < 4.0 is due to the different initial 
perturbations used to start the marching. Day et al. use the eigenfunctions for local 
theory as the initial perturbations. The fluctuations in the growth rate o, of luklmaz are 
associated with unevenly spaced grid points in the r used by spectral-element methods. 
Since the integration of Iu'I2 over the cross-stream plane is less affected by this factor, 
we will use only the energy growth rate o in the rest of this paper. 

A comparison of the perturbation velocity profiles is given in figure 5 for A = 62 at 
x/x, = 4. Again the agreement is reasonable. In figure 5(b), ui is scaled by Urn x0/v  (a 
factor of 1200). The small discrepancies in figure 5(b) are likely caused by the 
inaccuracy in measuring x,, (we calculated it from G, given by Day et al.) and the 
higher-order curvature terms kept in (2.8)-(2.10). 

4. Eckhaus instability of spatially developing Dean and Gortler vortices 
In this section, we first present four case studies of Dean and Gortler vortices with 

small and large wavenumbers, and then discuss some general features of spatial 
Eckhaus instability. For Dean vortices, the case studies are presented at Re = 2.ORe, 
in a curved channel with y = 0.975. The initial flow condition used to start the 
simulation code is uo = (0, uID( 1 .O +sin (27caz) x 0), where ulD is the velocity of 
curved channel Poiseuille flow. The field (0, ulD, 0) is used as the real part of the initial 
eigenfunction to start the stability code (the imaginary part is zero). We have tried 
different forms of initial eigenfunctions and found no difference in the growth rate and 
perturbation pattern. 

In the Gortler problem, we use a concave wall with radius R = 3.2m, free-stream 
velocity Urn = 5 m s-l and kinematic viscosity v = 14.5 x lop6 m sp2. These parameters 
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FIGURE 6. Spatial growth of the energies of the base Dean vortices a = 4.0 (-) and the related 
perturbation p = 2.0 (b = 0.5) of spatial Eckhaus instability (----). 

are also used by Swearingen & Blackwelder (1987). The initial flow condition used for 
the base flow uo is 

uo = ( € V B  cos (27cz/h), us, O), (4.1) 

where us and us are the streamwise and vertical velocities of Blasius flow and 8 is used 
to adjust the initial energy level of the disturbances in the base flow. The initial 
eigenfunction 

is used for both the real and imaginary parts of the related eigenfunctioins of Eckhaus 
instability . 

4.1. Dean vortices with large wavenumber 
Figure 6 shows the development of the energy of the perturbation defined by (2.6). Also 
given for reference is the energy of Dean vortices in the base flow. Note that the 
absolute energy level of the perturbation in (2.8)-(2.10) is irrelevant. The wavenumber 
of the base Dean vorties is a = 4.0. The perturbation wavenumber is /3 = 2.0 (b = 0.5). 
When 0 < 1.5, the growth rates of the base Dean vortices and the related perturbation 
are 0.071 and 0.09, which are equal to the growth rates of primary instability at 
a = 4.0 and 2.0. This indicates that when the Dean vortices in the base flow have small 
amplitude, the growth of each wavenumber is governed by primary instability. 
Different wavenumbers do not interact with each other at this stage. This is to be 
expected and can be shown analytically. 

The growth rate of the perturbation remains near 0.09 until 8 = 1.75, where the base 
Dean vortices have reached a significantly nonlinear level. When the base Dean 
vortices are fully developed at 0 = 3.0, the growth rate of the perturbation changes to 
0.019. This value is very close to the one given by the spatial Eckhaus instability using 
the fully developed Dean vortices 01 = 4.0 as the base flow. Thus the energy of the 
perturbation with b = 0.5, which grew initially due to a primary instability, is 
transferred into an Eckhaus instability once the base vortices become strongly 
nonlinear (at 0 > 2.5 or so). In figure 6 we can also see that the energy of the 
perturbation continues to grow while the base Dean vortices are developing. 

Figure 7 shows the spatial development of the radial velocity component of the base 

22 = ( -V , ,O,O)  ( 4 4  
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FIGURE 7. Contours of the velocity components (a) u: of the base Dean vortices and (b) u: of the 
related perturbation in figure 6 are shown in cross-stream planes from the streamwise location 
8 = 0.26 to 4.26 rad with A8 = 0.5 rad. The inner wall is above the outer wall and the flow proceeds 
downstream from top to bottom. Contours: (a) -0.065:0.055 with contour increment 0.01. (b) 
-0.7 x 0.7 x with contour increment 0.5 x 

flow and the perturbation in figure 6. In figure 7(a), the base Dean vortices become 
visible at B = 1.76. There are two vortex pairs shown in the domain because b = 0.5. 
When B > 2.5, the base vortices become fully developed. In figure 7(b), it can be seen 
that though there is always one pair of vortices in the perturbation, the shape of the 
perturbation begins to change at 0 = 1.76, where the base flow develops into nonlinear 
Dean vortices. From 15' = 1.76 to 3.0, the perturbation pattern experiences a spanwise 
shift. The increased density of the contour lines also indicates an increase of energy in 
the perturbation. By B = 3.76, the shape of the perturbation stops changing. 

The flow patterns of the base flow and the perturbation at 8 = 4.26 are shown in 
figure 8(a) and 8(b) in the cross-stream plane. The velocities in figure 8 (and all other 
vector plots in the rest of the paper) are shown on the grid points actually used in the 
computation. In figure 8(a), there are two pairs of nonlinear Dean vortices in the 
domain. The related perturbation in figure 8(b) has only one pair of vortices in the 
space of two base pairs. Its shape is quite similar to those given by Guo & Finlay (1991) 
using a temporal theory. In Guo & Finlay, the effect of this type of perturbation on the 
base flow is demonstrated by superimposing the perturbation on the base flow. 
Following the same procedure, we find an identical situation: the two base vortices 
near 2 z / d  = 1.6 and 2.4 in figure 8(a) are being forced together and become smaller. 
These two vortices are separated by an outflow region where the fluid flows from the 
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FIGURE 8. Base Dean vortices (a) and the related perturbation (b) in figure 7 are projected onto 
the ( r ,  z)-plane at 6’ = 4.26. 

convex (inner) wall to the concave (outer) wall. In the context of temporal theory, the 
nonlinear development of this type of perturbation is found to lead to the merging of 
two vortex pairs into one pair (Guo & Finlay 1991). 

4.2. Gortler vortices with short wavelength 
Figure 9 shows the development of the energy of the base Gortler vortices with 
h = 0.749 cm ( A  = 125) and the related perturbation of spatial Eckhaus instability 
with A, = 1.498 cm (b = 0.5). Also given are the energies of linear Gortler vortices from 
primary instability at h = 0.749 cm and 1.498cm. Both the simulation code and the 
stability code are started at x = 9.6 cm with e = 0.1 in equation (4.1). 

It can be seen that the growth of the base Gortler vortices is well predicted by 
primary instability for 0.35 < x < 0.6 m, where the base vortices are linear. When 
x > 0.6 m, where the nonlinearity of the base Gortler vortices sets in, the growth of the 
perturbation begins to change and the spatial Eckhaus instability becomes visible. As 
in the case of developing Dean vortices, the growth rate of the perturbation is always 
positive. 
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FIGURE 9. Energies of the base Gortler vortices h = 0.749 cm ( A  = 125, -) and the related 
perturbation A, = 1.498 cm (b = 0.5) of spatial Eckhaus instability (--.-). The energies of linear 
Gortler vortices from primary instability with h = 0.749 cm (----) and 1.498 cm (. . . . . . . .) are also 
given. 

In figure 9, the discrepancies for x < 0.35 m are partly due to the fact that the 
disturbance used to start the simulation is not the most unstable solution of the 
parabolized Navier-Stokes equations. In general cases, although different initial 
conditions lead to different solutions, the most unstable eigensolutions will grow out 
of the transient solution associated with a given initial condition and dominate the 
solution downstream, while the other components of the transient solution will decay. 
So a certain distance downstream, these eigensolutions will converge to a unique 
solution (cf. figure 4 in this study, Hall 1983 and Day et al. 1990). Since the instability 
of interest in this study sets in only when the solutions are marched downstream a 
certain distance where the base vortices become nonlinear, the arbitrariness in initial 
conditions used for the base flow and perturbation do not affect our results. 

Figure 10 shows the cross-stream flow patterns of both base flow and perturbation 
at x = 1.169 m where the base vortices are nonlinear. In figure lO(b), one can see that 
on top of the two vortices near the wall there are another two vortices, far away from 
the wall. In the spanwise direction, there is only one pair of vortices in the domain, 
compared to two pairs of the base flow in figure lO(a). This is different from the Dean 
vortices in figure 8 (b). To demonstrate the effect of the perturbation on the base flow, 
the perturbation in figure 10(b) is superimposed on the base vortices in figure 10(a) and 
is shown in figure lO(c). The amplitude of the perturbation is 16.7 % of the base flow’s 
amplitude (which is not a linear perturbation but the large perturbation is used for 
visual clarity). For the base vortex pair with an outflow region at z / h  = 1.0 in 
figure lO(a), the lower half of the vortex pair near the wall is squeezed together by 
the two perturbation vortices near the wall in figure lO(b), so that its dimension in the 
spanwise direction becomes less. The upper half of this vortex pair is amplified by the 
two perturbation vortices away from the wall, and as a result it becomes elongated in 
the radial direction and grows bigger. For the base vortex pair near z / h  = 0 (or 2.0) 
in figure lO(u), the lower half of the vortex pair near the wall is enhanced by the two 
perturbation vortices near the wall (figure lob) and grows stronger, while its upper half 
is weakened by the two perturbation vortices away from the wall. As a result, this 
vortex pair moves closer to the wall. If this character of the perturbation is maintained 
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FIGURE 10. Base Gortler vortices and the perturbation of figure 9, are projected onto the 
(v,z)-plane at x = 1.169 m (in a and b);  (c) shows (a) + 16.7% of (b). 

in the nonlinear state, we can expect that the vortex pair centred near z /h  = 1.0 will 
be ejected from the wall, to be replaced by the other two vortices. The nonlinear aspect 
of this development will be studied in $5.3. 

Unlike the Dean problem, the perturbation pattern of spatial Eckhaus instability for 
Gortler vortices is sensitive to the spanwise phase difference between the base vortices 
and the perturbation before the onset of the Eckhaus instability. Our numerical results 
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show that when the cosine function in (4.1) is replaced by a sine function, a 
perturbation pattern similar to that of the Dean case in figure 8 is observed. There is 
only one pair of perturbation vortices in the space of two base pairs. In all cases, no 
significant spanwise shift of the perturbation pattern is observed. In the Dean problem, 
a significant spanwise adjustment of the perturbation pattern is observed when the base 
Dean vortices enter the nonlinear stage (figure 7b). As a result, the perturbation 
pattern there is not sensitive to the spanwise phase difference between the base vortices 
and perturbation during the primary growth. 

4.3. Dean vortices with small wavenumber 
For base Dean vortices with long wavelength, the streamwise development of the 
perturbation and its relation to the energy level of base vortices are similar to those 
with short wavelength presented in $4.1. But the perturbation patterns on the cross- 
stream plane are quite different. Figures 11 (a)  and 11 (b)  show the flow patterns of the 
base flow and the perturbation at the downstream location 8 = 3.26. The parameters 
used to start the analysis are similar to those in figure 6 but the base Dean vortices 
having a: = 2.0 and the perturbation having /3 = 1 .O (b = 0.5). After the appearance of 
the Eckhaus instability, the number of vortices in the perturbation increases from one 
pair to three pairs (figure 11 b), while the number of base vortices remains at two pairs 
(figure 11 a). This situation is almost identical to that discussed in Guo & Finlay (1991). 
The superimposition of the perturbation on the base flow shows that near 2z/d = 0.8, 
a small vortex pair with an inflow region at its centre is generated near the concave wall 
while the two old pairs with inflow regions at their centres near 2z/d = 2.4 and 5.5 in 
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FIGURE 12. Energies of the base Gortler vortices h = 2.13 cm (A = 600, --) and the related 
perturbation A, = 4.26 cm (b = 0.5) of spatial Eckhaus instability (--.-). The energies of linear 
Gortler vortices from primary instability with h = 2.13 cm (----) and 4.26 cm (. . . . . . .) are also given. 

figure 11 (a)  are squeezed together towards 2z/d = 4.0. In Guo & Finlay, the temporal 
simulations show that the nonlinear development of these perturbations results in the 
appearance of new vortex pair near 2z/d = 0.8. 

We find a similar result for base Dean vortices with other wavenumbers. If the fully 
developed Dean vortices are within the stability boundary of Eckhaus instability (i.e. 
they are stable and lie within the 'Eckhaus boundary' in Guo & Finlay 1991), we find 
that the growth of the perturbation is similar to that in figure 6 before the base Dean 
vortices reach the fully developed state. Once the base vortices become fully developed, 
the perturbation decays. 

4.4. Gortler vortices with long wavelength 
Figure 12 shows the energy of the Gortler vortices in the base flow with wavelength 
h = 2.13 cm ( A  = 600) and the related perturbation of spatial Eckhaus instability with 
A, = 4.26 cm (b = 0.5). Both the simulation code and the stability code are started at 
x = 9.6 cm with e = 0.05 in equation (4.1) but with the cosine function replaced by a 
sine function. For 0.4 < x < 0.7 m, the base Gortler vortices are linear. When 
x > 0.7 m, the nonlinearity of the base Gortler vortices sets in, and the growth of the 
perturbation begins to differ from that of the primary instability, and the spatial 
Eckhaus instability begins to play an important role. 

The evolution of the streamwise component u: of the base Gortler vortices and the 
outflow component ui of the related perturbation is shown in figure 13. At x = 0.52 
and 0.68 m, the patterns of the perturbation (figure 13b) are the same as the ones with 
h = 4.26 cm from primary instability analysis. There is only one pair of vortices in the 
box. These perturbation patterns grow downstream until x = 0.84 m where the base 
Gortler vortices have reached a considerable nonlinear amplitude (figure 13 a). At this 
location, two small additional single vortices begin to appear near the wall at the 
bottom of the two original vortices and continue to grow downstream. As in the case 
of short wavelength, the spanwise shift of the perturbation is very weak, and the 
downstream development of the perturbation depends sensitively on the phase 
difference between the base vortices and the perturbation before the onset of the 
Eckhaus instability. The effect of the perturbation on the base flow is similar to that 
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FIGURE 13. Contours of the velocity components (a) u: of the base Gortler vortices and (b) u: of the 
perturbation in figure 12 are shown in cross-stream planes at x = 0.52, 0.68, 0.84, 0.93, 1.0 and 



Spatially developing nonlinear Dean and Gortler vortices 21 

of Dean vortices with long wavelength : a new vortex pair will be created near the wall 
between the two existing vortex pairs which are squeezed together. 

Figure 14 shows a similar case to that of figure 13 at x = 0.984 m but with the initial 
condition given by (4.1) and c = 0.1. Before the base vortices enter the nonlinear stage, 
the flow pattern of the perturbation is the same as the one in figure 13(b). When the 
base vortices become nonlinear at x = 0.984 m, the perturbation pattern shown in 
figure 14(b) is different from that in figure 13(b), although the total number of strong 
vortex pairs is still three. The superimposition of the perturbation on the base vortices 
shows that the effect of the perturbation on the base flow is similar to that in figure 
13 (b) except that the (small) new pair is closer to the vortex pair near z / h  = 0.9 than 
the other pair. 

Similar results are found for all A > 500. The larger A is, the stronger the extra small 
vortice in the perturbation are, and the more likely it is that a new pair of vortices will 
appear in the flow. Like the Dean problem, it is difficult to define a lower bound on A 
at which the perturbation changes from having three pairs of vortices to one pair (and 
which thus distinguishes vortex splitting from merging). 

4.5. Some general features 
The perturbation flow patterns discussed in 994.14.4 are typical patterns found in 
most cases. In all these cases, the perturbation wavenumber b = 0.5 is used. When 
other perturbation wavelengths (b =k 0.5) are used, there are some differences between 
Dean and Gortler vortices. When Dean vortices reach a nonlinear stage and become 
fully developed, the growth rate cr and b exhibit a relation almost identical to that 
revealed by Guo & Finlay (1991) using a temporal theory, i.e. b = 0.5 gives the largest 
cr. This property has been discussed extensively in Guo & Finlay (1991) and we shall 
not repeat the discussion here. The nonlinear developing stage of the base Dean 
vortices serves as a transition zone for the energy of the primary instability to be 
transferred to the spatial Eckhaus instability. There also exists a wavenumber for a 
given Re which has the smallest growth rate of Eckhaus instability. This wavenumber 
is very close to that given by temporal theory (the ‘Eckhaus valley’ in Guo & Finlay 
1991). In general, the growth rates of the spatial Eckhaus instability of fully developed 
Dean vortices are smaller than those of the primary instability. Table 1 lists typical 
values of these growth rates. It can be seen that they are almost eight times smaller than 
those of primary instability in most cases. Small growth rates suggest that in order to 
observe the splitting and merging of Dean vortices in a finite streamwise distance, 
relatively high energy levels of disturbances are needed. We will discuss this issue in 95. 

In the case of Gortler vortices, the situation is a little different. Since the growth rate 
of spatial Eckhaus instability depends sensitively on the spanwise phase difference 
between the base vortices and the perturbation before the onset of the Eckhaus 
instability, and the growth of the nonlinear base Gortler vortices have different 
influences on Eckhaus instability with different b, it is difficult to compare the growth 
rates with different b and to determine the most unstable b. Only with the help of the 
simulations with a large spanwise computational box are we able to determine that 
b = 0.5 is the most unstable wavenumber in most cases. For example, when more than 
three pairs of Gortler vortices are included in a computational box, the splitting and 
merging of vortices mostly involves two pairs of Gortler vortices and the flow patterns 
are similar to those predicted by superimposing the perturbations with b = 0.5 on the 

1.25 m. The concave wall is shown as a flat plate and the flow proceeds downstream from top to 
bottom. Contours: (a) 0: 0.95 with contour increment 0.05. (b)  -0.000 18: 0.000 18 with contour 
increment 0.9 x 
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FIGURE 14. (a) Base Gortler vortices and (b) the perturbation with e = 0.1 in equation (4.1), are 
projected onto the (Y, 2)-plane at x = 0.982 m. 

RelRe, a g l D  

1.7 2.4 0.077 
1.9 2.4 0.091 
2.2 2.4 0.109 
2.5 2.4 0.122 
2.8 2.4 0.134 
3.0 2.4 0.140 
3.25 2.5 0.150 

g 2 D  

0.0124 
0.0143 
0.0156 
0.0160 
0.0180 
0.0190 
0.0200 

TABLE 1. The growth rates of primary instability ( g l D )  and spatial Eckhaus instability with 
b = 0.5 are listed as a function of RelRe, and wavenumber a 

base Gortler vortices. Since the perturbation growth rate of spatial Eckhaus instability 
depends on the nonlinear development of the Gortler vortices in the base flow, it is 
difficult to define the growth rate of the spatial Eckhaus instability as a function of 
Gortler number G and wavelength parameter A .  This is one of the problems facing the 
stability analysis of unsteady flow (Drazin & Reid 1981). Here, other than b = 0.5 
being the most unstable, we give no specific growth rate pattern. Instead, we shall focus 
our attention on the physical consequences of this type of instability, for example 
vortex splitting and merging. This situation is different from the secondary instability 
of Tollmien-Schlichting waves reviewed by Herbert (1988), where the secondary 
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growth rate is much larger than that of the base Tollmien-Schlichting waves. The 
growth of the Tollmien-Schlichting waves has negligible effects on the secondary 
instability, and thus it is possible to present the growth rate of the secondary instability 
in the terms of the amplitude (percentage) of the base Tollmien-Schlichting waves. 

To summarize the above discussions, our study in this section shows that when the 
energy level of the developing vortices in the base flow is low, the stability of each 
wavenumber is dictated independently by primary instability. Multiple wavenumbers 
can develop at the same time until a dominant wavenumber in the base flow reaches 
the nonlinear stage. As the dominant vortices develop nonlinearly, spatial Eckhaus 
instability sets in and the perturbations associated with the wavenumber b = 0.5 
become the most unstable and continue to grow. The development of one wavenumber 
does not inhibit the development of other wavenumbers. Once the vortices are strongly 
nonlinear, the energy in wavenumbers other than the dominant one and its harmonics 
appears to be transferred from independently growing primary instability eigen- 
functions into spatial Eckhaus instability eigenfunctions. 

5. Simulation of vortex splitting and merging 
To support the arguments and results from linear theory in $4, we study in this 

section the nonlinear aspects of spatial Eckhaus instability using the simulation code. 
For Dean vortices, the initial flow conditioins used to start the simulation code are 

u = (0, uID( 1 .O + (sin (47caz) + e sin (47cpz)) x 0),  (5.1) 

where a is the wavenumber of the dominant Dean vortices and p is the perturbation 
wavenumber. Here, the dominant vortices a correspond to the base vortices in a linear 
theory and the perturbation /3 simulates the perturbation of Eckhaus instability. In the 
case of Gortler vortices, the initial conditions are 

u = (vB, us + 0.03uB(sin (47czlh) + e sin (47cz/h,)), 0), ( 5 4  

where h is the dominant wavelength, A, is the perturbation wavelength. In (5.1) and 
(5.2), e is used to adjust the energy level of the perturbation relative to the dominant 
vortices. Two pairs of dominant vortices are included in the computational box since, 
in all cases studied, the most unstable perturbation wavenumber b is 0.5 or 1.5. We also 
monitor the energy in spanwise Fourier mode k, defined by (Finlay et al. 1988) 

E(k,) = c(k,) s" a(r, k,)2 dr, 

where c(k) = 0.5 for k = 0 and c(k) = 1 for k + 0; &(r,k,) is the spanwise Fourier 
transform of u. In the case of b = 0.5, before the spanwise perturbation becomes 
nonlinear the energy in the first mode comes mostly from the perturbation with 
b = 0.5 and the energy in the second mode comes mostly from the dominant vortices. 

T i  

5.1. Dean vortices with large wavenumber 
Figure 15 shows the flow pattern in cross-stream planes of a flow with the dominant 
wavenumber a = 4.0 and the perturbation wavenumber /i' = 2.0 ( b  = 0.5). In this 
simulation, e = 0.08. Two pairs of the dominant Dean vortices becomes visible at 
0 = 2.75. At 0 = 3.0, they are fully developed. A complete vortex merging event can be 
seen at 0 = 4.25 shortly after the dominant wavenumber reaches the fully developed 
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FIGURE 15(a,b). For caption see facing page. 

state. At B = 1.51 in figure 15(a), there are two pairs of vortices with outflow regions 
at their centres near 2z/d = 1.2 and 2.7. At this stage, the vortices are basically linear. 
Both pairs have almost the same strength. At B = 3.01 in figure 15(b), the dominant 
vortices are more or less fully developed. We can see that there are some distortions on 
the vortex pair near 2z/d = 1.2. We believe these distortions are due to the growth of 
the energy associated with the perturbation ,!i’ = 2.0. These distortions provide high 
perturbation levels for the nonlinear development of spatial Eckhaus instability that 
soon follows. At 0 = 3.76 in figure 15(c), the vortex pair between 2z/d = 1.6 and 2.4 
is squeezed towards 2z/d = 2.0 and becomes smaller, while the other vortex pair grows 
bigger. This development continues downstream. At B = 4.81 in figure 15(d), the two 
small vortices near 2z/d = 2.0 in figure 15(c) disappear completely and there is only 
one pair of vortices in the domain. The vortex merging event is completed. 

The energy development of figure 15 is shown in figure 16. We can see that before 
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the energy in the second Fourier mode reaches the nonlinear state at 8 = 2.0, the 
energy growth rates in the second and first modes are 0.07 and 0.09, which are equal 
to the growth rates of primary instability at a = 4.0 and 2.0. Before the Dean vortices 
in the base flow reach a nonlinear level, the growth of each wavenumber is governed 
purely by primary instability. When the dominant Dean vortices enter the nonlinear 
stage at 8 = 2.0, the growth of the second and first modes begins to slow down. When 
the dominant wavenumber reaches the fully developed state at 8 = 3.5, the energy in 
the first mode continues to grow from 8 = 3.5 to 4.0 but at the new rate 0.02, which 
is close to the growth rate of spatial Eckhaus instability of fully developed Dean 
vortices 01 = 4.0 (cf. figure 6). Further downstream, nonlinear interaction between the 
dominant wavenumber and the perturbation can be expected because the energy level 
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FIGURE 16. Spatial variation of the total energy (-) and the energies in the first (---) and the 
second (- . -) spanwise Fourier modes of the Dean vortices in figure 15. 
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FIGURE 17. Energy of a flow similar to that in figure 16 but with E = 0.05 in equation (5.1). 

in the first mode is comparable with that in the second mode. At 0 = 4.25, the sudden 
drop of energy in the second mode indicates the beginning of nonlinear vortex merging. 

Comparing figure 15(c) to the linear stability analysis in 94.1, we can see that the 
merging event roughly follows what is predicted by the stability theory : one vortex pair 
separated by an outflow region is squeezed and weakened by Eckhaus instability, and 
eventually two pairs of vortices merge into one pair. From figures 15 (b) and 15(c), we 
also see that the flow pattern switches from distorted Dean vortices to the vortex 
merging pattern predicted by the spatial Eckhaus theory. 

During a vortex merging event, the vortex structures can become highly asymmetric 
and irregular due to the nonlinear development of spatial Eckhaus instability and the 
nonlinear interactions between different wavenumbers. But when the merging event is 
complete, the vortex structures become symmetric again. In experiments, time- 
dependence of the flow will probably occur due to time-varying inlet perturbation 
conditions. How this will affect vortex merging process needs further study. 
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FIGURE 18. Contours of the velocity component u, of developing Dean vortices is shown in cross- 
stream planes from the streamwise location 0 = 0.255 to 6 rad with A0 = 0.25 rad in a curved channel 
with y = 0.975 at Re = 2.186Re,. The simulation is started with a = 2.0, /3 = 3.0 and 8 = 0.25 in 
equation (5.1). The inner wall is above the outer wall and the flow proceeds downstream from top 
to bottom. Contours: -0.1: -0.01, 0.01:O.l with contour increment 0.01. 

We can control the streamwise location of a vortex merging event by adjusting E in 
equation (5.1). Figure 17 shows the development of the energy for a flow similar to that 
in figure 16, but now with E = 0.05. It can be seen more clearly that the energy growth 
rate of the first Fourier mode switches from the primary growth rate CT = 0.09 when 
6 < 2.0 to the growth rate c = 0.02 of spatial Eckhaus instability when 8 > 3.5. The 
merging event is completed by 6 = 5.5. Our simulations show that when small E is used, 
the dominant Dean vortices are less distorted when their amplitude saturates and the 
structures of the vortices are more symmetric, like those in Guo & Finlay (1991, figure 
19). In addition, the merging event takes a longer streamwise distance to complete 
when a smaller E is used. 

5.2. Dean vortices with small wavenumber 
Figure 18 shows the evolution of the velocity component u, of a flow where the 
dominant wavenumber is a = 2.0 and the perturbation wavenumber is p = 3.0 
(b  = 1.5) and Re = 2.186ReC. In this simulation, E = 0.25. We choose b = 1.5 here 
instead of b = 0.5 because the growth rate of the primary instability at p = 3.0 is larger 
than that at /3 = 1.0 (b  = 0.5). When the dominant wavenumber enters the nonlinear 
stage, the growth rate of the spatial Eckhaus instability is the same for both b = 1.5 and 
0.5 (cf. (3.1)). Thus, b = 1.5 will generate more disturbance energy than b = 0.5 will 
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FIGURE 19. Dean vortices of figure 18 are projected onto the (r,z)-plane at (a) B = 2.5; 
(b) B = 4.0; (c) B = 5.0 and ( d )  B = 6.0 rad. 

when entering the Eckhaus instability stage (a simulation with b = 0.5 confirms this). 
In figure 18, it can be seen that the two dominant vortex pairs reach a fully developed 
stage at 0 = 2.25. Shortly afterwards at 0 = 4.0, a new vortex pair appears between the 
two dominant vortex pairs and the dominant pairs are pushed apart a little. For 
8 > 4.5, the domain is filled by three pairs of vortices. This is a vortex splitting event. 

The flow pattern of figure 18 is shown in cross-stream planes in figure 19. At 
8 = 2.5 in figure 19(a), there are two equal-strength pairs of vortices with inflow regions 
near 2z/d = 1.8 and 5.8. Downstream at 6' = 4.0 in figure 19(b), the two dominant 
pairs are pushed apart and a small vortex pair can be seen at 2z /d=  3.9 near the 
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concave wall. This new vortex pair has an inflow region at its centre. As this new vortex 
pair grows downstream, it pushes the two dominant pairs further apart in figure 19(c). 
By 8 = 6.0 in figure 19(d), the vortex splitting event is complete and three pairs of 
vortices occupy the whole domain. We can see that the vortex splitting pattern is well 
predicted by linear stability theory in 54.3. A small new vortex pair is generated first 
near the concave wall in between two dominant vortex pairs. It has an inflow region 
at its centre. Two dominant vortex pairs are pushed apart by the new pair. 

The development of the energy in spanwise Fourier modes shows a similar situation 
to those in figures 15 and 17, except that here the energy in the third Fourier mode is 
used to monitor the growth of the perturbation with b = 1.5. As in the case of vortex 
merging, the streamwise location of a vortex splitting event can be controlled by 
adjusting E in (5.1). An increase in e causes a splitting event to become visible earlier 
upstream. 

5.3. Gortler vortices with short wavelength 
Figure 20 shows the flow patterns in the cross-stream plane of a simulation with the 
dominant wavelength h = 0.749 cm ( A  = 125) and the perturbation wavelength 
A, = 2h (b = 0.5). The simulation is started at the streamwise location x = 0.032 m. A 
relatively large E ( E  = 0.2) is used in (5.2). Figure 20(a) shows the flow pattern at 
x = 0.556 m. There are two pairs of relatively weak vortices in the domain. Further 
downstream at x = 0.71 m, the vortex pair with an outflow region near z / h  = 1.75 
grows bigger in the r-direction compared with the other pair centred near z / h  = 0.8. 
These changes are seen more clearly at x = 0.864 m in figure 20(c). The flow patterns 
in figure 20 (c) and figure 10 (c) are quite similar. The lower half of the vortex pair near 
z / h  = 1.75 in figure 20 (c) is squeezed together while the upper half is elongated in the 
r-direction and grows bigger. The vortex pair near z / h  = 0.8 is pressed towards the 
wall (relative to the growing boundary-layer thickness) and becomes shorter in the r- 
direction but wider in the spanwise direction. This vortex merging pattern continues to 
develop nonlinearly downstream. At x = 1.018 m (figure 20d), the vortex pair near 
z / h  = 1.75 is much stronger and elongated in the r-direction, while the other pair near 
z / h  = 0.8 grows only a little in the r-direction. Further downstream at x = 1.171 m in 
figure 20(e), as the vortex pair near z / h  = 1.75 moves away from the wall, its strength 
reduces. The vortex pair near z /h  = 0.8 becomes stronger again. Our simulation shows 
that further downstream, this vortex pair eventually occupies the whole domain and 
the vortex pair near z / h  = 1.75 disappears totally as it moves away from the wall. 

The energies in the first and second Fourier modes of the Gortler vortices in figure 
20 are shown in figure 21, together with the perturbation energy of the spatial Eckhaus 
instability. The perturbation energy level is scaled to match the energy in the first 
Fourier mode. It can be seen that for x < 0.6 m, the energy in the second Fourier mode 
(which corresponds to the dominant wavelength) is close to the total energy. This 
indicates that the dominant Gortler vortices are in the linear stage and the energy in 
the harmonics of the dominant wavelength is negligible. When x > 0.6 m, the energy 
in the second mode begins to drop (compared to the total energy) and the nonlinearity 
of this dominant wavelength begins to set in. For 0.45 < x < 0.6 m, the growth of the 
first mode is roughly predicted by spatial Eckhaus instability. When x > 0.6 m, the 
growth of the first mode begins to slow down. By x > 0.9 m, the energy level in the first 
mode is quite comparable with that in the second mode. From figure 20(c), we know 
that the nonlinear development of the spatial Eckhaus instability begins to dominate 
the flow at this point, and the interactions among different wavelengths become visible. 

Generally, the smaller e is, the greater streamwise distance over which the prediction 
given by spatial Eckhaus instability for the energy growth in the first mode is valid. 
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FIGURE 20(u-d). For caption see facing page. 

This situation is similar to that for Dean vortices. It is not surprising that the linear 
prediction fails once nonlinearity sets in. When e is large, nonlinearity occurs early and 
there are three types of nonlinearities involved: the nonlinearity of the dominant 
vortices, the nonlinearity of perturbations and the nonlinear interaction between the 
dominant vortices and perturbations. It is difficult to determine these nonlinear effects 
even with numerical simulations. 
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FIGURE 20. Gortler vortices with dominant wavelength h = 0.749 cm ( A  = 125) are projected onto the 
(r,z)-plane at (a) x = 0.556 m; (b) x = 0.71 m;  (c) x = 0.864 m; ( d )  x = 1.018 m and (e) x = 1.171 m. 
Here, U ,  = 5 m s-l. v = 14.5 x m SP and R = 3.2 m. The simulation is started with 
h = 0.749 cm, b = 0.5 and E = 0.2 in equation (5.2). 

Compared to Dean vortices, the vortex merging process of Gortler vortices is a little 
different. In the case of Dean vortices, once a vortex pair separated by the fluid flowing 
towards the concave wall is squeezed together and becomes smaller, this flow pattern 
continues to develop until the squeezed pair totally disappears. In the case of Gortler 
vortices, one vortex pair is pressed towards the wall and becomes shorter in the r- 
direction (relative to the undistorted case), while its neighbouring pair is elongated in 
the r-direction and grows bigger. Further downstream as this neighbouring vortex pair 
moves away from the wall and becomes weaker (probably due to a reduction of the 
centrifugal force which drives the centrifugal instability), the remaining vortex pair 
begins to dominate the domain. This phenomenon is not found in Dean vortices where 
the vortices occupy the whole breadth of the channel and the convex wall prevents any 
escape. But in both Dean and Gortler vortices, the nonlinear vortex merging patterns 
are quite similar to those predicted by spatial Eckhaus instability theory. 

5.4. Gortler vortices with long wavelength 
Figure 22 shows the spatial development of the velocity component uo of a simulation 
with the dominant Gortler vortices with h = 2.13 cm ( A  = 600), the perturbation 
A, = (b = 1.5), and the perturbation level e = 0.8. The two dominant mushrooms 
can first be seen at x = 0.474 m. They grow rapidly downstream. At x = 0.627 m, a 
small mushroom can be detected in between the two dominant mushrooms. By 
x = 0.781 m, the small mushroom is clear. It is closer to the right dominant mushroom 
than to the left one. Adjusting e, we can control the streamwise location of the 
appearance of the new pair of vortices. In figure 22, a very large e = 0.8 is used. If we 
increase the wavelength of the dominant Gortler vortices to h = 2.5 m, a smaller 

2-2 
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FIGURE 21. The total energy (-) and the energies in the first (--.-) and second (----) Fourier 
mode of the Gortler vortices in figure 20 are shown us. streamwise distance. Also given is the energy 
of the perturbation from spatial Eckhaus instability (. . . . . . . .). 

FIGURE 22. Contours of the streamwise velocity uo of the Gortler vortices with dominant wavelength 
h = 2.13 cm ( A  = 600) are shown in cross-stream planes from x = 0.0384 to 0.96 m with 
Ax = 0.1536 m. Here, U ,  = 5 m s-l, v = 14.5 x m s - ~  and R = 3.2 m. The simulation is started 
with h = 2.13 cm, b = 1.5 and e = 0.8 in equation (5.2). The concave wall is shown as a flat plate 
and the flow proceeds downstream from left to right. Contours: 0: 0.9 with contour increment 0.05. 

e = 0.2 is enough to make the vortex splitting quite visible in the same streamwise 
distance. 

The flow pattern at x = 0.93 m of figure 22 is shown in figure 23. In addition to two 
dominant Gortler vortices with outflow regions near z / h  = 0.6 and 1.8, there is also a 
small vortex pair near z / h  = 1.25. In the spanwise direction, there are three vortex 
pairs in the domain. The flow pattern in figure 23 is roughly predicted by the linear 
stability theory in 94.4 (in the case of figure 14). The new vortex pair is generated near 
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FIGURE 23. Gortler vortices of figure 22 are projected onto the (u, z)-plane at x = 0.934 m. 

the wall in between the two dominant vortex pairs in a region where the fluid flows 
towards the wall, and is closer to one dominant pair than the other. 

5.5. General discussion 

Similar results are also found at other parameter values. In the case of Dean vortices, 
the instability of developing Dean vortices to spanwise perturbations is essential for 
vortex splitting or merging to be observed at a finite downsteam distance. Initial 
perturbations at the channel entrance, as well as the growth rates of the primary 
instability and the spatial Eckhaus instability all play important roles in the first 
appearance of vortex splitting or merging. 

In the case of Gortler vortices, both splitting and merging types of nonlinear 
development of spatial Eckhaus instability significantly modify the mushroom shapes 
of the streamwise velocity and cause asymmetric vortex structures and irregularity. 
Since most Gortler vortices break down for x > 1.2 m for the flow parameters we have 
used (cf. Swearingen & Blackwelder 1987), the nonlinear development of splitting and 
merging of vortices may not have sufficient streamwise distance to develop fully. For 
example, in the case of vortex merging, the Gortler vortices will probably break down 
before two vortex pairs develop completely into one pair. Thus, in experiments only the 
beginning of the merging process is likely to be observed. Because Gortler vortices are 
under constant spatial evolution, vortex splitting may manifest itself through the later 
formations of some vortex pairs in between other vortices. If we consider an 
observation of one vortex pair becoming smaller while its neighbour grows bigger as 
the signature of vortex merging, and the later appearance of some vortices in between 
existing vortices as the signature of vortex splitting, then experimental evidence is 
plentiful (cf. Bippes 1972; Aihara & Koyama 1980; Aihara et al. 1984; recently 
Swearingen & Blackwelder 1987). Our recent conversation with H. Bippes further 
confirms this. Since there are severe irregularities in most experimentally observed 
Gortler vortices and no special attention has been given to the spatial Eckhaus 
instability of Gortler vortices, we will not elaborate on experimental evidence any 
further. We believe that the vortex splitting and merging or spatial Eckhaus instability 
can also be effectively studied experimentally by introducing two sets of disturbances 
near the leading edge: the first set has a larger amplitude and corresponds to the 
dominant wavelength h in (5.2) and the second set corresponds to A, in (5.2). 
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When perturbations with b =I 0.5 (or 1.5) are used, results similar to those discussed 
in 555.1-5.4 are obtained if the perturbation energy level is much lower than that of the 
dominant vortices and there is no nonlinear interaction between the perturbation and 
the dominant vortices. In other words, before the dominant vortices become fully 
developed, the growth of the perturbation with low energy level is governed by primary 
instability. When the dominant vortices are fully developed, the growth rate of this 
perturbation is given by spatial Eckhaus instability. If the perturbation level is high and 
comparable with that of the dominant vortices, some energy of the perturbation with 
b $: 0.5 is converted into perturbations with b near 0.5 due to nonlinear interactions 
between the dominant vortices and the perturbations with b + 0.5. As a result, the 
growth of the perturbation with b = 0.5 dominates the flow in some cases and the 
nonlinear vortex splitting and merging discussed early in this section occur. If the 
growth of the perturbation with b = 0.5 does not dominate the flow, vortex splitting 
and merging still occur but in a different (irregular) way. In the case of Dean vortices, 
spatial Eckhaus instability is still characterized by vortex splitting and merging. And 
in the case of Gortler vortices, it is characterized by irregularities of the dominant 
Gortler vortices. 

Compared to Dean vortices, Gortler vortices have a smaller growth rate of spatial 
Eckhaus instability. In order to observe vortex splitting and merging (in figures 20 and 
22), a large e is required. This indicates that the interactions between Gortler vortex 
pairs are not as strong as those between Dean vortices. 

6. Wavenumber selection and irregularity 
6.1. Dean vortices 

From spatial primary stability theory (cf. Matsson & Alfredsson 1990), we know the 
growth rates of primary instability do not vary significantly with CL for a band of 
wavenumbers near the one with the maximum growth rate. The wavenumber selection 
mechanism of primary instability is not strong for this band of wavenumbers. Since the 
nonlinear growth of Dean vortices depends on both the growth rate of primary 
instability and the perturbations at the entrance of a channel, the wavenumber with the 
maximum growth rate is not necessarily the one that will be observed in experiments. 
The observed wavenumbers could be in a band near the most unstable wavenumbers, 
especially for high Re where the differences between the primary growth rates for 
different wavenumbers are small. If the perturbations have equal energy for all 
wavenumbers (e.g. low-level broadband turbulence), then upstream of any vortex 
splitting or merging event, the observed wavenumber should be close to the one with 
the maximum growth rate. At high Re (> 2.OReC), the spatial development of Dean 
vortices is very sensitive to small disturbances due to a large primary growth rate. For 
example at Re = 2.186ReC, our simulation shows that a perturbation level less than 
10-50is enough to make Dean vortices visible at a streamwise distance of 0 < 5.0 rad. 
Thus we believe that the preference of Dean vortices for certain spanwise locations 
observed by Matsson & Alfredsson (1992) may be due to disturbances caused by the 
channel geometry. 

In 554 and 5 ,  we have shown that the developing Dean vortices are unstable to 
spanwise perturbations. The nonlinear growth of these spanwise perturbations causes 
vortex merging and splitting. As a result, the wavenumbers of Dean vortices are 
changed. Since the first round of vortex splitting and merging events depends on the 
initial perturbations at the channel entrance and the growth rates of primary instability 
and spatial Eckhaus instability, it is difficult to predict the favoured wavenumbers that 
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FIGURE 24. Contours of the velocity component u, of developing Dean vortices is shown in cross- 
stream planes from the streamwise location 0 = 0.5 to 7.5 rad with A0 = 0.5 rad in a curved channel 
y = 0.975 at Re = 2.186ReC. The simulation is started with a = 3.0 for the right three vortex pairs and 
a = 2.5 for the left two vortex pairs. The inner wall is above the outer wall and the flow proceeds 
downstream from top to bottom. Contours: -0.08: 0.08 with contour increment 0.0105. 

survive the first round of vortex splitting and merging. Further downstream as the 
splitting and merging of vortices continues to occur due to the instability of nonlinear 
Dean vortices with respect to spanwise perturbations, the wavenumbers that have the 
minimum growth rate of spatial Eckhaus instability are more likely to be observed. 
More discussion on this wavenumber selection mechanism can be found in Guo & 
Finlay (1 99 1). 

The perturbations needed for splitting and merging of vortices to occur can also 
come from the interactions between vortices with different wavenumbers. Figure 24 
shows such a case at y = 0.975 and Re = 2.186ReC. The initial perturbations used to 
start the simulation have a wavenumber of 2.5 for the left two vortex pairs and 3.0 for 
the remaining three vortex pairs. The maximum amplitudes of the initial perturbations 
are 0.01 % 0. In figure 24, the Dean vortices of a = 3.0 and 2.5 reach a fully developed 
state at 6'= 2.5. Then, near the two interfaces between vortices with different 
wavenumbers, a merging event among the vortices with a = 3.0 and a splitting event 
among the vortices with a = 2.5 begin to develop one after another. When the same 
parameters are used but with only one wavenumber initially in the flow, splitting or 
merging events are not visible in the same length of the channel. 

Since Dean vortices are unstable all the time to spanwise perturbations for 
Re > 1.5Re, (outside the stability boundary of Eckhaus instability), they are constantly 
distorted by all other disturbances, e.g. the development of multiple wavenumbers 
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during their linear development and vortex splitting or merging during their nonlinear 
development. Observation of irregular Dean vortices should be rather common. 

6.2. Gor tler vortices 
It has been shown by many researchers (cf. Floryan & Saric 1984; Hall 1983) that 
wavelengths near A = 210 generally have the largest primary growth rates. In Bippes’ 
(1972) experiments when screens (disturbance generators) are used to generate 
isotropic random disturbances, the wavelength parameters A of the observed Gortler 
vortices are near 210. But in the observations of Tani (1962), Winoto & Crane (1980) 
and Swearingen & Blackwelder (1987), much longer wavelengths of naturally occurring 
Gortler vortices are observed ( A  3 650). 

In Guo (1992), it has been shown that the growth rate of primary instability does not 
vary significantly from A = 175 to 400. For this wavelength range, the wavelength 
selection mechanism of primary instability is weak. It has also been shown by Hall 
(1983, 1988) that over a short distance downstream from the leading edge, the primary 
growth rate varies considerably for different forms of initial perturbations. This further 
widens the wavelength range favoured by primary instability, and thus weakens (and 
complicates) the wavelength selection mechanism of primary instability. If the 
perturbations near the leading edge are dominated by a wavelength within this widened 
wavelength range, this wavelength will have a better chance to develop into dominant 
vortices due to its higher initial energy level. If all wavelengths in the perturbations 
have equal energy, wavelengths near A = 210 are more likely to be observed due to 
their slightly higher primary growth rate in most cases. 

Our simulations of nonlinear Gortler vortices in $5 show that the growth rates of 
primary instability are small compared to the streamwise length allowable for Gortler 
vortices to develop. Relatively high energy levels for initial perturbations (1 YO of U,) 
are required in our simulations in order to obtain Gortler vortices with a strength 
comparable with those observed by Swearingen & Blackwelder (1987). (In the case of 
Dean vortices, the initial perturbations are less than 0.001 % of 0.) This suggests that 
in the experiments of Swearingen & Blackwelder, there exists a relatively high level of 
perturbations. According to the experimental specifications given by Swearingen & 
Blackwelder, these large perturbations are not in the free stream. At x = 10 cm from 
the leading edge, the disturbances they measured have amplitude 1 %  of U,. This 
indicates that somewhere in between the leading edge and x = 10cm, large 
perturbations have been generated. These perturbations cannot be produced by a 
Gortler instability because of its small growth rate and the short streamwise distance 
to this location. 

Since Bippes (1972) and Swearingen & Blackwelder (1987) observed different 
wavelengths for naturally occurring Gortler vortices, it is useful to compare the 
experimental devices of these two groups. In the experiments conducted by Swearingen 
& Blackwelder (1987), the test section is essentially a variable-width curved channel. 
The perpendicular distance between the testing (concave) plate and the convex plate is 
small. This design imposes restrictions on the vertical velocity u, near the leading edge 
(where u, is of order 1 YO of U,), and will generate perturbations that reduce the value 
of u, compared with a free concave wall, i.e. perturbations with u: = -cur (where u, is 
the vertical velocity for a single free concave wall) will be generated. In Bippes’ 
experiments, concave plates with constant curvature are towed in a water tank. We 
believe that this set-up imposes less restriction on the vertical velocity u, near the 
leading edge. This is also manifested by the fact that when disturbance generators 
(screens) are not used in Bippes’ experiments, the naturally occurring Gortler vortices 



Spatially developing nonlinear Dean and Gortler vortices 37 

are very small and not well defined (Bippes, 1992, personal communication). Another 
likely source of large disturbances is the misalignment of the leading edge to the 
direction of the free-stream Urn. Using the configurations of Swearingen & Blackwelder 
(1987), our simulations show that a misalignment of half a degree in the r- or z- 
direction will generate enough disturbances for the Gortler vortices of the observed 
strength to develop. The common feature of the large perturbations generated by either 
the restriction on u, or misalignment of the leading edge to the free stream is that these 
large perturbations do not vary rapidly in the spanwise direction, and they depend 
strongly on the experimental apparatus. When random initial perturbations or 
perturbations with rapid spanwise variation are used in the simulations, we find the 
average wavelength of the dominant Gortler vortices is very close to A = 210, the one 
with the largest primary growth rate. In Bippes’ experiments, the perturbations 
generated by screens are of rapid variation, so the observed wavelengths of Gortler 
vortices are close to A = 210. 

From the above discussions we conclude that when the perturbations near the leading 
edge have both rapid and slow spanwise variations, there is energy in all wavelengths 
and thus the wavelength selection mechanism of primary instability plays a more 
important role. The wavelengths of the dominant Gortler vortices are expected to be 
close to A = 210. When the perturbations near the leading edge have only slow 
spanwise variation, longer wavelengths will be favoured and the dominant Gortler 
vorties will have wavelengths longer than A = 2 10. 

Another important source of large perturbations is the leading edge itself. When the 
free stream hits the leading edge, acoustic waves will be generated and the flow near 
the leading edge is elliptic in nature. To determine the form and strength of 
disturbances generated by the leading edge, it is probably necessary to resort to a time- 
dependent, three-dimensional elliptical analysis. Very recently, attention has been 
given to the leading-edge receptivity of the Gortler problem (Hall 1990). Readers are 
referred to Hall (1990) for more details. 

The studies in 994 and 5 show that developing Gortler vortices are not stable to 
spanwise perturbations. During the linear development of the dominant Gortler 
vortices, vortices with other wavelengths grow independently at the rate given by 
primary instability at these wavelengths. As the dominant Gortler vortices develop into 
the nonlinear stage, spatial Eckhaus instability sets in. The nonlinear growth of this 
instability can generate new vortices or cause some dominant Gortler vortices to 
disappear. Since the dominant Gortler vortices break down shortly after they enter 
nonlinear stage, we do not expect splitting and merging of vortices to affect the 
wavelength selection process significantly. Instead, they will deform the dominant 
Gortler vortices significantly and produce irregular vortices. We believe this explains 
the prevailing irregularities of Gortler vortices observed experimentally. 

Compared to Dean vortices, the interactions between Gortler vortices with different 
wavelengths are relatively weak. Our simulations show that the interactions alone do 
not change the wavelengths of the vortices significantly, but they do modify the 
structures of the Gortler vortices and generate irregularity. 

7. Concluding remarks 
This study shows that spatially developing Dean vortices and Gortler vortices are 

unstable to spanwise perturbations. This instability is mostly characterized by vortex 
splitting and merging in a channel geometry, and by irregular vortex structures in a 
concave boundary layer. If there were no such instability, then when vortices of a 



38 Y. Guo and W. H. Finlay 

certain wavelength become nonlinear, all disturbances with other wavelengths would 
decay. This would result in regular symmetric nonlinear vortices (like those observed 
in Taylor-Couette flow where the stable region of a similar instability is a large open 
region, cf. Riecke & Paap 1986), and the irregular non-symmetric vortex structures 
observed in curved channel and concave boundary layer experiments would not occur. 

The study done by Guo & Finlay (1991) shows that in the context of temporal 
theory, the streamwise vortices caused by rotation or by both rotation and streamwise 
curvature in channel geometries have an Eckhaus instability similar to that of Dean 
vortices. Vortex splitting and merging phenomenon are also observed in cross-flow 
vortices (Spalart 1989 ; Bippes 1992, personal communication). Whether the features of 
Dean and Gortler vortices found in this study exist for vortices caused by rotation in 
a rotating channel or on a rotating flat plate, or those caused by cross-flow instability 
remains to be seen. Since the nonlinear development of this type of instability modifies 
the vortex structures significantly (in both Dean and Gortler problems), the study of 
this type of instability and its effects on the onset of other secondary instabilities is a 
necessary step toward understanding the transition to turbulence. 
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